BK BIRLA CENTRE FOR EDUCATION

SARALA BIRLA GROUP OF SCHOOLS SENIOR SECONDARY CO-ED DAY CUM BOYS' RESIDENTIAL SCHOOL

PRE MID TERM EXAMINATION -2024-25

CHEMISTRY (043)

Class : XI Duration: 1 Hr
Date : 07/01/2025 Max. Marks: 25

Answer Key

Section A: 1-Mark Questions

1. Which of the following is an example of an electrophile?

Answer: (c) H⁺

Explanation: Electrophiles are electron-deficient species that accept electron pairs.

H⁺ is an electron-deficient ion.

2. Identify the correct IUPAC name of the compound CH₃ -CH₂ -CH=CH₂.

Answer: (a) 1-Butene

Explanation: The double bond starts at the first carbon in this compound.

3. What is the general formula of alkanes?

Answer: (b) $CnH_2 n_{+2}$

Explanation: Alkanes are saturated hydrocarbons and follow this formula.

4. Assertion (A): Alkanes are saturated hydrocarbons.

Reason (R): Alkanes contain only sigma bonds between carbon atoms.

Answer: (a) Both A and R are correct, and R explains A.

5. Assertion (A): Benzene is more stable than expected from its structure.

Reason (R): Benzene undergoes addition reactions readily.

Answer: (c) A is correct, but R is incorrect.

Explanation: Benzene is stable due to resonance and primarily undergoes substitution, not addition reactions.

Section B: 2-Mark Questions

6. Define the term functional group. Give an example of a compound containing a functional group.

Answer:

A functional group is an atom or group of atoms within a molecule that determines the chemical properties of the molecule.

Example: -OH in ethanol (C₂ H₅ OH).

7. Differentiate between homolytic and heterolytic bond fission with examples. Answer:

• **Homolytic fission:** The bond breaks equally, and each atom gets one electron. Example: $Cl_2 \rightarrow Cl_{\bullet} + Cl_{\bullet}$

• **Heterolytic fission:** The bond breaks unequally, and one atom gets both electrons.

Example: $H-Cl \rightarrow H^+ + Cl^-$

- 8. Write the structure and IUPAC name of the following compounds:
 - (a) **Alkene:** CH_3 - $CH=CH-CH_2$ - CH_3 \rightarrow *Pent-2-ene*
 - (b) Alkyne: $CH \equiv C CH_2 CH_3 \rightarrow But-1-yne$
- 9. Explain the term resonance with reference to benzene. Draw its resonance structures.

Answer:

Resonance is the delocalization of π -electrons in a molecule to stabilize it.

Resonance structures of benzene:

Section C: 3-Mark Questions

10. Write the mechanism of the free radical substitution reaction of methane with chlorine.

Answer:

Step 1: Initiation

 $Cl_2 \rightarrow 2Cl \cdot (UV light)$

Step 2: Propagation
$$CH_4 + Cl \cdot \rightarrow CH_3 \cdot + HCl$$

$$CH_4 + Cl^{\bullet} \rightarrow CH_3 + HCl^{\bullet}$$

 $CH_3 \cdot + Cl_2 \rightarrow CH_3 \cdot Cl + Cl^{\bullet}$

Step 3: Termination

$$Cl \cdot + Cl \cdot \rightarrow Cl_2$$

 $CH_3 \cdot + CH_3 \cdot \rightarrow C_2 H_6$

11. What are isomers? Write the structural isomers of $C_4\ H_{1\ 0}\$ and name them using IUPAC rules.

Answer:

Isomers: Compounds with the same molecular formula but different structures.

- **n-Butane:** CH₃ -CH₂ -CH₂ -CH₃
- Iso-Butane (2-methylpropane):
- 12. Convert the following:
 - (a) Ethene to Ethane:

$$CH_2 = CH_2 + H_2 \rightarrow CH_3 - CH_3$$
 (Hydrogenation, Ni catalyst).

(b) Ethene to Ethanol:

$$CH_2 = CH_2 + H_2 O \rightarrow CH_3 - CH_2 OH (Acid-catalyzed hydration, H_2 SO_4).$$

(c) Benzene to Nitrobenzene:

$$C_6 H_6 + HNO_3 \rightarrow C_6 H_5 NO_2 + H_2 O$$
(Nitration, conc. $H_2 SO_4$).

- 13. Write short notes on the following:
 - (a) Aromaticity:

Aromatic compounds follow Huckel's rule: $(4n + 2) \pi$ -electrons. Benzene is aromatic with 6 π -electrons.

(b) Electrophilic substitution reactions of benzene:

- Nitration: C₆ H₆ + HNO₃ → C₆ H₅ NO₂ + H₂ O
 Halogenation: C₆ H₆ + Cl₂ → C₆ H₅ Cl + HCl (FeCl₃ catalyst).